Mobile Vision for Ambient Learning in Urban Environments

G. Fritz, C. Seifert, P. Luley, L. Paletta and A. Almer

JOANNEUM RESEARCH Forschungsgesellschaft
Institute of Digital Image Processing
Graz, Austria
Motivation

- Mobile vision for personal assistance
 - Automated mobile image analysis
 - Outdoors object detection and identification
 - Vision providing object and context awareness

- Urban environments
 - Tourist city information systems
 - Shopping assistants
 - Assistive technology for the visually impaired

- City exploration and learning
 - Intuitive multimodal Human Computer Interfaces (HCI)
 - Contextual learning
Motivation
Mobile Vision - State of the Art

Multimedia VTT, Finland

AR-PDA, Germany

CMU Pittsburgh, USA
(Yang et al. 2001)
Motivation

JR Outdoors
Object Recognition

- **EU Cognitive Vision Projects**
 - EC Project DETECT: logo detection
 - EC Project MACS: purposive robot vision
 - Mobile Vision

- **Industrial Projects**
 - Mobile road sign inventory
 - Traffic surveillance systems

- **JRP ASF Cognitive Vision – Key Technology for Personal Assistants**
 - Attentive recognition strategies
 - Contextual memories

Lucas Paletta, Institute of Digital Image Processing
Motivation

Urban Information Systems

- Vision enhanced city explorer
- Information in field of view
- No maps or addresses
Mobile Learning in Urban Environments

Urban Objects
Mobile Learning in Urban Environments

Ambient Learning

- Exploration of urban environment
- Responsive to objects in the field of view
- Object awareness

Lucas Paletta, Institute of Digital Image Processing

MLEARN 2004, Lago Bracciano, Italy
Mobile Learning in Urban Environments
Multimedia User Interface

Lucas Paletta, Institute of Digital Image Processing
Local environment (*Hauptplatz Graz*)

- 10 objects (*7 buildings, 3 statues*)
- Each from 3 different viewpoints
- Imagettes *10x10, 15x15, 20x20, 25x25*
- Informative features and voting
Learning Discriminative Features

ROI for training samples

Discriminative imagettes
Discriminative Features

- Discriminative features
- Voting of responses
- Integration of votes
Computer Vision Methodology
Sight Identification

Hauptplatz building
Opera house

Church statue
Hauptplatz building
Computer Vision Methodology

Viewpoint Changes

- **ROI for training samples**
- **Glacis avenue building**
$H_a(\Omega|g) = -\sum_{\alpha_k \in \Omega} P(\alpha_k|g) \log(P(\alpha_k|g))$

Fritz et al. AAAI 2004
Informative Representations

- Entropy threshold \(\Theta \)
- Maximum a posteriori interpretation
- Sparse object representation \(\leq 10\% \)
Robust on Occlusion and Noise

40% occlusion

80% occlusion

50% Gaussian noise
Occlusion Performance Analysis

INFORMATIVE imagettes

ALL imagettes

Recognition Rate [%]

Occlusion [%]

Fritz et al. ICPR 2004

Lucas Paletta, Institute of Digital Image Processing

MLEARN 2004, Lago Bracciano, Italy
Conclusion and Outlook

- **Conclusion**
 - Mobile vision and object recognition
 - Learning from city exploration

- **Ongoing and future work**
 - Extended scope - objects, viewpoints, illumination
 - Application using camera phones
 - Logging tourists
 - localisation
 - trajectories
 - focus of attention
Localisation

Legend
- GPS-based position estimation
- Object
- Object capture position (OCP)
- GPS-indexed OCP
Thank You for Your Attention!